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Abstract 

Crime prevention requires accurate prediction of the spatial and temporal distribution of criminal activities to effec-
tively allocate law enforcement resources. However, many trending crime prediction algorithms lack comprehen-
sive spatio-temporal structures and often consider only single input variables. This study innovatively using in ST-
Cokriging method integrated both historical crime records as the primary variable and crime-related geo-tagged 
Twitter data as the co-variable for crime prediction. The predictive method has been specifically developed to assess 
crime risk across three major crime types—street crime, property crime, and vehicle crime—and applied in the San 
Francisco Bay Area (SFBA), California, a region characterized by high development and heightened crime sensitivity, 
for both prediction and validation. The results indicate that incorporating social media data into a spatio-temporal sta-
tistical method improves the associations between predicted and actual crime risk, reduced the Root Mean Squared 
Error (RMSE), and enhanced the identification of crime risk areas for both weekdays and weekends across three crime 
types compared to the method without the co-variable. This study presents a new multi-variable approach to more 
accurately predict crime, enabling law enforcement proactively address crime of varying nature in urban areas.
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1  Introduction
Accurate crime prediction enables a strategic and pro-
active approach to public safety, allowing law enforce-
ment agencies to allocate their resources efficiently, 
anticipate criminal activities, and potentially prevent 
them before they occur (Braga et al., 2014; Chainey et al., 

2008; Mohamad Zamri et  al., 2021). However, accurate 
crime prediction is challenging due to the complex and 
variable nature of spatial and temporal crime patterns. 
Crime incidents often exhibit significant spatial cluster-
ing, making it difficult to generalize predictions across 
different neighborhoods or cities. Also, temporal pat-
terns can fluctuate during specific times, weekdays or 
weekends, and special events. Variability in data quality, 
reporting practices, and the influence of socio-economic 
factors further exacerbate these challenges, requiring 
sophisticated computational models to accurately cap-
ture and predict crime trends (Ferreira et al., 2012; Wang 
et al., 2019). Incorporating both spatial and temporal pat-
terns in crime prediction is imperative, as it provides a 
comprehensive understanding of crime dynamics, sig-
nificantly increasing the accuracy and effectiveness of 
predictive models (Du & Ding, 2023; Hu et al., 2018).
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A variety of crime prediction methodologies have been 
developed over the past decades. Traditionally, crime sta-
tistics and hotspot analyses have relied on single input 
crime data to identify crime-prone areas (Amerio & 
Roccato, 2005; Braga et  al., 2014). Then, crime predic-
tion methodologies have evolved to integrate multiple 
variables, recognizing that crime activity is influenced 
by a complex interplay of different factors (Tasnim et al., 
2022). For example, machine learning models that con-
sider crime data and ten urban indicators can increase 
the accuracy of homicide prediction in Brazil from 
2001 to 2020 (Alves et al., 2018). It has been found that 
the spatio-temporal graph neural network framework 
could achieve both high predictive accuracy and strong 
interpretability, outperforming existing models in crime 
prediction while effectively handling data sparsity and 
missing information (Tang et  al., 2023). Moreover, the 
transformer-based model could enhance the telecommu-
nication network crime predictions in China and various 
crimes such as street crime, property crime, and personal 
offense in the United States (Butt et al., 2025; Shi et al., 
2023). Additional studies have explored using geo-tagged 
Twitter (now known as X) data as additional variables 
to enhance the modeling of criminal activity distribu-
tions (Bendler et  al., 2014; Corso et  al., 2016; Liu et  al., 
2022). The results demonstrated that this approach out-
performed traditional methods by incorporating these 
additional variables. However, traditional crime predic-
tion methods often fail to integrate spatial and temporal 
dimensions, limiting their ability to accurately capture 
patterns and forecast future crime activities. Recent 
advancements in methodologies further incorporate both 
spatial and temporal information into the multivariable 
crime prediction model to further improve performance. 
Despite substantial advancements in crime prediction 
methodologies, there exists a literature gap in using the 
multivariable spatio-temporal crime prediction model 
that combines both historical crime data and social 
media data for crime prediction.

In this study, we developed a new spatio-temporal 
Cokriging (ST-Cokriging) method to jointly incorporate 
historical crime call data and Twitter data for enhanced 
crime prediction in large urban areas such as San Jose, 
California. By utilizing both traditional crime reports and 
real-time social media data, our approach aims to over-
come limitations of single-source crime modeling and 
improve spatial coverage and predictive accuracy. The 
crime call data were used as the primary variable in the 
ST-Cokriging, while Twitter data—filtered using crime-
related keywords—served as the secondary co-variable. 
We then designed an ST-Cokriging algorithm (detailed 
in the Methods section) that rigorously accounts for the 
spatio-temporal statistical structure of both datasets to 

generate improved crime predictions. Previous research 
suggests that integrating secondary variables can enhance 
crime prediction through multi-source data fusion (Yang 
et al., 2020; Yu et al., 2020).

The integration of social media into predictive mod-
els of social dynamics has emerged as a transformative 
approach, as volunteered geographic information pro-
vides real-time insights and a more nuanced understand-
ing of underlying social factors (Ahn & Spangler, 2014; 
Rousidis et  al., 2020; Schoen et  al., 2013; Wang et  al., 
2020). Human activities, as reflected in social media 
interactions and community behaviors, show a significant 
correlation with crime patterns, affecting both the preva-
lence and nature of various criminal activities (Kadar & 
Pletikosa, 2018; Vomfell et al., 2018). Research has shown 
that social media can provide real-time insights into 
human behavior and societal trends, which, in turn, influ-
ence crime patterns (Vomfell et  al., 2018). Twitter, with 
its real-time data and rich user content, provides valuable 
insights into social dynamics, making it ideal for predic-
tive models (Gayo-Avello, 2013; Zhang et al., 2014; Zheng 
et al., 2018). For instance, Twitter has proven effective in 
mapping motor vehicle thefts in Mexico City, while prop-
erty crime like burglaries and larcenies in Montreal were 
found to correlate with geo-tagged Twitter sentiment 
from 2011 to 2017 (Da Silva et  al., 2019; Piña-García & 
Ramírez-Ramírez, 2019). Integrating social media data 
with historical crime data meaningfully improves hot-
spot prediction—e.g., CrimeTelescope achieved ~5.2% 
higher accuracy in New York city, while enabling richer, 
timely situational awareness via interactive maps (Yang 
et al., 2018). Additionally, Twitter data can augment tra-
ditional community channels in South Africa by enabling 
rapid, transparent crime reporting and data collection 
that helps detect patterns, support prediction, and guide 
enforcement where constant policing is impractical 
(Featherstone, 2013). Collectively, these studies under-
score social media as a complementary, real-time data 
source that strengthens crime monitoring, hotspot pre-
diction, and operational decision-making across diverse 
contexts.

While various studies have focused on predicting 
specific crime such as assaults (Liu et  al., 2022; Uitten-
bogaard & Ceccato, 2012), robberies (Chainey, 2013), 
or burglaries (Piña-García & Ramírez-Ramírez, 2019)), 
few have explored predictions of a wide range of crime 
types. Integrating multivariable spatio-temporal meth-
ods can provide a more holistic understanding of crime 
patterns and improve prediction accuracy across dif-
ferent criminal activities. Given the differing crime pat-
terns between weekdays and weekends (Piña-García 
& Ramírez-Ramírez, 2019; Yang et  al., 2020), this study 
separately tested predictions and validations for three 
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crime types (street crime, property crime, and vehicle 
crime) for weekdays and weekends. The large volume of 
Twitter data from the study area was filtered using key-
words tailored to each specific crime type. The algorithm 
explicitly calculated and considered the unique spatial 
and temporal auto-dependencies within the spatial and 
temporal domains, marking the first effort to estimate 
these differences among street crime, property crime, 
and vehicle crime in this context. The primary aim is to 
deepen the understanding of crime dynamics, as different 
crime types follow distinct patterns influenced by factors 
such as urban layout, social behavior, and law enforce-
ment practices. Moreover, tailoring predictive models 
to specific crime types enables law enforcement agen-
cies to implement more targeted interventions and allo-
cate resources more effectively by accurately identifying 
where and when particular types of crime are most likely 
to occur.

2 � Data and method
2.1 � Study area
San Jose, located in the heart of Silicon Valley, California, 
has emerged as a global hub for high-tech and internet 
industries, propelling it to become California’s fastest-
growing economy since the  1990s (Zandiatashbar & 
Kayanan, 2020). It is the third-largest city in the state 
and the 12th largest city by population in the United 
States, boasting a population of approximately 1.01 mil-
lion (Berry-James et  al., 2020). Despite its reputation as 
a prosperous tech hub, the city’s economic growth and 
population accumulation have brought urban challenges, 
including an escalating crime rate that correlates with 
a widening wealth gap (Yuan et  al., 2022, 2024). From 
2013 to 2022, the violent crime rate in San Jose increased 
from 326.6 to 516.8 per 100,000 people, while its prop-
erty crime rate reached 2597.5 per 100,000 population 
in 2022, surpassing the national level of 1954.4 (SJPD, 
2023b; U.S. Department of Justice—Federal Bureau of 
Investigation, 2023). This juxtaposition of rising pros-
perity alongside increasing crime rates underscores the 
complex nature of urban crime dynamics. Factors such 
as socio-economic changes, neighborhood characteris-
tics, and evolving social trends intricately weave together, 
influencing the city’s crime patterns. This context pre-
sents a rich and multifaceted backdrop for examining 
the spatial and temporal dimensions of crime in San Jose, 
offering insights into how economic progress and urban 
development intersect with public safety challenges.

We applied the Urban Growth Boundary of San Jose, 
provided by the Bureau of Land Management, County of 
Santa Clara, as the study boundary to extract the San Jose 
urban region (Fig.  1). Established in response to rapid 
urban expansion between 1950 and 1970, this boundary 

aims to regulate sprawl and mitigate environmental 
impacts. The San Jose urban region is also an important 
planning framework in the San Jose 2040 General Plan, 
to which this research may provide valuable urban devel-
opment insights. This boundary covers an area of 370.3 
km2, encompassing most of the population activities and 
economic areas, and encapsulates 99.3% of all crime data 
in San Jose.

2.2 � Crime data and preprocessing
The crime data for San Jose was sourced directly from 
the San Jose Police Department’s phone call records, 
with records in 2014 selected for the case study (SJPD, 
2023a). Dataset in 2014 was chosen for the study due 
to the early stages of Silicon Valley’s economic growth, 
which resulted in significant increases in crime dur-
ing this period. The dataset includes a catalog of phone 
calls reporting various crime across the city, with each 
crime’s address digitized. Each record is associated with 
a specific crime incident and includes key attributes such 
as call type, crime location, crime activity type, weapon 
involvement, and timestamp information. The crime 
locations reported in phone call records were geocoded 
using Geoapify (Geoapify, 2024), providing precise geo-
graphical coordinates along with temporal and crime 
reporting information for further spatio-temporal analy-
sis. In 2014, San Jose recorded a total of 313,817 crime-
related phone calls.

Three major categories of crime have been selected 
from the dataset: street crime, property crime, and 
vehicle crime. The street crime included 2,010 records 
encompassing “strong arm robbery”, “strong arm robbery 
(combined event)”, “armed robbery”, “robbery”, “armed 
robbery (combined event)”, “purse snatch robbery”, “rob-
bery, gang related”, “assault with deadly weapon”, “assault 
with deadly weapon (combined event)”, “assault”, “assault 
with deadly weapon, gang”, “assault and battery”, and 
“assault on an officer”. Property crime incorporated 
11,563 calls, with categories ranging from “burglary 
report”, “burglary, “vehicle burglary”, “theft”, “grand theft”, 
“petty theft prior conviction”, “theft of recyclables”, “petty 
theft”, and “theft, gang related”. Finally, vehicle crime, 
with 12,778 records, included “misdemeanor hit and run”, 
“felony hit and run”, “stolen vehicle”, and “stolen vehicle 
gang related”.

Spatial and temporal patterns of criminal activities 
vary between weekdays and weekends as the have differ-
ent spatial and temporal patterns (Newton et  al., 2008; 
Uittenbogaard & Ceccato, 2012; B. Yang et  al., 2020). A 
higher frequency of the three identified crime types is 
observed on weekends—specifically Saturday (day 6 in 
a week) and Sunday (day 7 in a week)—compared with 
weekdays, as reflected in their spatial distributions. Given 
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these variations, it is crucial to categorize crime data 
distinctly into weekday and weekend groups for more 
accurate analysis. Following the division adopted in pre-
vious studies, the weekday category spans from Monday 
at 12:00 AM to Friday at 11:59 PM local time, enabling a 
comprehensive analysis of crime patterns during regular 
workdays. The weekend category covers the period from 
Saturday at 12:00 AM to Sunday at 11:59 PM local time, 

capturing the distinct dynamics of crime incidents that 
typically occur during these days. The data for the three 
crime types was aggregated to generate a crime risk map 
using the kernel density function (DeVeaux et al., 1999). 
A cell size of 100  m was applied for the kernel density 
estimation (KDE) to optimize both the predictive perfor-
mance and practical applicability in policing and crime 
prevention strategies (Chainey, 2013; Du & Ding, 2023). 

Fig. 1  Street crime, property crime, and vehicle crime distributions overlay with city map in San Jose in 2014
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A fixed search radius (bandwidth) of 2 km was applied to 
ensure appropriate smoothing and capture broader spa-
tial patterns in crime activities, covering approximately 
1,257 grid cells (100 m × 100 m) within the KDE surface. 
This approach transformed discrete crime points into 
continuous risk maps, with each pixel indicating crime 
risk across the study area (Chainey, 2013).

2.3 � Social media data collection and filtering
In this study we take consideration of the Twitter data 
as the co-variable in ST-Cokriging to enhance the crime 
prediction results, as the Twitter data has been widely 
used for crime activities predicting and social behavior 
modeling (Gayo-Avello, 2013; Lan et  al., 2019; Vomfell 
et al., 2018). The Twitter data employed in this study was 
collected using the Twitter Academic API, a resource 
offered by Twitter that allows for extensive and granular 
data gathering. For this study, our focus was on geotagged 
tweets originating from San Jose in 2014. Geotagged 
tweets are those where the user has opted to include their 
geographic locations (longitude/latitude) at the time of 
posting, enabling us to capture spatial information tied to 
each tweet. There were 1,048,575 geotagged tweets col-
lected via the API in San Jose, California in 2014. Each 
geo-tagged tweet was logged with its tweet ID, username, 
creation time, and full text.

Since the historical crime data is associated with 
specific crime types, a keyword-based strategy was 
employed to filter tweets corresponding to each type 
of criminal activity. We meticulously developed a set of 
keywords for each crime category to accurately capture 
crime-related tweets. The design of our dataset ensures 
a close reflection of the unique characteristics of each 

crime type studied, along with their corresponding spa-
tio-temporal patterns. For instance, to identify tweets 
related to street crime, the dataset was filtered using key-
words such as "assault," "robbery," "robbed," and "assault-
ing", etc. The comprehensive list of the keywords used is 
presented in Table 1 below. Following the keyword filter-
ing, a manual review was conducted to further refine the 
selection of relevant tweets. These combined processes 
helped pinpoint 190 tweets related to street crime, 720 
tweets related to property crime, and 408 tweets related 
to vehicle crime (Lal et al., 2020).

2.4 � ST‑Cokriging method
The Kriging method is a traditional geostatistical inter-
polation technique that models spatial autocorrela-
tion to minimize estimation variance. Cokriging is an 
extension introduced by Journel & Huijbregts (1978) 
improves interpolation by incorporating spatially cor-
related secondary co-variable, enhancing predictions 
in environmental and resource modeling (Goovaerts, 
1997). ST-Cokriging algorithm adopts a spatio-temporal 
statistical model to consider multi-sources. The histori-
cal crime data are considered as the primary variable of 
the prediction, while the auxiliary data that correlated 
with crime were modeled as the co-variable. We innova-
tively developed the ST-Cokriging to incorporate filtered 
Twitter data as the co-variable by adding the secondary 
co-variable with spatiotemporal structure, which con-
sider social behavior patterns in the spatial and temporal 
domain. The spatio-temporal structure for ST-Cokriging 
considering the both space and time aspects were mod-
eled using the mathematical framework (Eq. 1):

Table 1  Keywords and tweet filtering process for the three crime types

* The tweets need to have at least one keyword from each of the 2 groups connected by “AND”

Crime type Keywords Filtered tweet Count 
(Keywords filtering)

Re-filtered Tweet 
Count (Manual 
Review)

Street crime "assault", "assaults", "assaulting", "assaulted", "rob", "robbed", "robs", "robbing", "robbery", 
"robberies", "robber", "robbers

3229 720

Property crime "theft", "thief", "thieves", "thefts", "stole", "steal", "stolen”, “break in", "break-in", "breaking-
and-entering", "forced entry", "unlawful entry", "intruder", "invade", "invasion", "broke in", 
"broken in", "breaks in", "burglary", "larceny", "larcenies", "burglarize", "burglaries", "burglar-
ized", "burgled", "Burglary-in-Progress", "burglarizing"

1035 408

Vehicle crime "hijack", "Joyriding", "Carjacking", "joyride", "carjack", "hijacking", "hijacked", "hit and run", 
"hit & run", "hit and killed", "hit and runs", "hit-and-run", "hit&run", "car accident", "car 
injury", "car injuries", "car victim", "crash", "driving drunk", "drunk driver", "over speeding", 
"speeding", "rear ending", "road accident", "road rash", "vehicle accident", "vehicle crash", 
"vehicle injury", "vehicle injuries", "vehicle victim", "hit a car", "car collision", "vehicle colli-
sion", "hit a person", "hit a parked car", "speeding", "break", "pedestrian crash"

588 190

["hit", "hitting", "hits"] and* ["run", "running", "ran", "escape", "escaped", "flee", "fleeing"]

["car", "cars", "vehicle", "vehicles", "motor", "auto", "motorcycle"] and ["theft", "thief", 
"thieves", "thefts", "stole", "steal", "stolen", "gone", "GPS tracking"]
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where Ẑ1(x0, t0) is the predictor of the criminal activities 
at pixel location x0 and at time t0 ; The time point t0 is the 
predicting time point in the temporal domain.  Z1(sij , ti) 
denotes the primary variable of the historical crime data 
at location sij at time series ti, j = 1, . . . ,Ni, i = 1, . . . ,T

; Z2 uk , t
′   denotes the co-variable of the crime related 

Twitter data at location uk at time  t ′  and k = 1, . . . ,M. 
Two sets of weights 

{
αij : j = 1, . . . ,Ni; i = 1, . . . ,T

}
 and {

βk : k = 1, . . . ,M
}
 were obtained by solving the spatio-

temporal covariance matrix for the best unbiased linear 
predictor. In this ST-Cokriging framework, the input data 
consist of: (1) Primary variable – KDE-generated raster 
surfaces representing the spatial intensity of historical 
crime data over time, and (2) Secondary co-variable – 
KDE surfaces derived from crime-related Twitter data. 
The output of the ST-Cokriging model is a spatiotempo-
ral prediction surface—a raster grid estimating the crime 
intensity at each location x0 and time t0 . For different 
types of crime activities, the primary variable was derived 
from the historical crime maps at specific time points, 
while the co-variable represents the spatial–temporal 
pattern of crime-related tweets at a predicting time. The 
spatio-temporal semi-variogram are calculated first to 
estimate the different spatio-temporal patterns of the 
street, property, and vehicle crime, respectively.

The linear system in ST-Cokriging is solved as a linear 
system to get the weights for the prediction. In particu-
lar, the Cokriging variance for the spatio-temporal pre-
diction predictor  Ẑ1(x0, t0) can be computed as stated 
in previous literature (Cressie & Huang, 1999; Kyriak-
idis & Journel, 1999; Snepvangers et al., 2003). Also, the 
uncertainty associated with the prediction is also cal-
culated based on the spatial–temporal distribution of 
the data. This methodology allows for the prediction of 
crime occurrences in a given spatial and temporal con-
text considering the relationship between crime data 
and auxiliary tweet variables. This study models the dif-
ferent types of crime data, including street crime, prop-
erty crime, and vehicle crime.

To estimate the spatio-temporal structures for differ-
ent types of crime vary spatial and temporal in depend-
ence, the study employs separate spatial and temporal 
semi-variograms to estimate the spatio-temporal struc-
tures for crime types within and between a primary 
variable and the co-variable. A semi-variogram is a sta-
tistical tool used in spatial statistical analysis to quan-
tify the spatial and temporal correlation or dependence 
between data points at varying distances. Spatial semi-
variograms are calculated using Eq. 2: 

(1)Ẑ1(x0, t0) =
∑T

i=1

∑Ni
j=1

αijZ1

(
sij , ti

)
+

∑M
k=1 βkZ2(uk , t′)

where N (hs) is the number of randomly chosen pairs 
for same type of the crime within the fixed spatial dis-
tance of hs , measures the average spatial variation of 
crime data points based on spatial distance, while tempo-
ral semi-variograms are calculated using Eq. 3: 

where N (ht) is the number of data pairs of same crime 
type which are located at the same location while sepa-
rated by ht period, consider the time difference between 
data points at the same location. Based on equations 
above, spatial and temporal semi-variograms were 
derived for the primary variable for three types of crimi-
nal activities. Thus, for each type of crime—street crime, 
property crime, and vehicle crime—spatial and temporal 
semi-variograms were calculated separately for week-
days and weekends. A least square fitting method was 
employed to determine the best fitting models for both 
spatial and temporal semi-variograms, including Gauss-
ian, exponential, spheric, or linear models. Because pre-
vious study has shown that crime incidents typically 
exhibit no consistent directional preference, as offenders 
tend to operate or move within localized areas without 
a predominant spatial orientation (Gilmour & Higham, 
2022). Once the spatial and temporal semi-variograms 
were estimated and fitted, they were combined to the 
spatio-temporal structure to measure how the variance 
between data points changes as the distance and time 
lag between them increases. Covariance matrices were 
derived for both the primary and co-variable, consider-
ing spatial and temporal distances. This matrix aids in 
the understanding of how primary and co-variable relate 
over space and time, ensuring a consistent temporal 
dimension and positive definiteness in their relationship. 
Spatio-temporal covariances have the property that they 
can be written as a product or the sum of a valid spatial 
covariance and a valid temporal covariance. To ensure an 
optimal balance between efficiency and effectiveness, the 
valid spatial covariance model and valid temporal covari-
ance model were combined in product form (Yang et al., 
2020). 

2.5 � Accuracy evaluation
The effectiveness of the ST-Cokriging prediction was 
evaluated using the Pearson Correlation Coefficient 
(r), Root Mean Squared Error (RMSE), as well as PAI 
(Prediction Accuracy Index) and PEI (Prediction 

(2)
γ (hs) =

1

2N (hs)

∑N (hs)
i=1

[Z(s1, t1)− Z(s1 + hs, t1)]
2

(3)
γt(ht) =

1

2N (ht )

∑N (ht )
i=1

[Z(s1, t1)− Z(s1, t1 + ht)]
2
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Efficiency Index) which are commonly used evalua-
tion metrics to assess the effectiveness of spatial crime 
forecasting models (Chainey et  al., 2008). r (Pearson) 
measures the correlation between predicted and actual 
data, while RMSE measures the differences between 
predicted and actual data. PAI assesses how effectively 
the prediction captures crime hot-spots, considering 
the ratio of crime successfully predicted within a hot-
spot area to the total area of interest. PAI can be calcu-
lated using Eq. 4,

where  n  represents the number of crimes accurately pre-
dicted within the identified hotspot area, N   is the total 
number of crimes during the prediction period, a denotes 
the area of the crime hotspots, and A is the total area of 
the region under study. For example, if the model can 
accurately predict 80% of all crime activities in 40% of the 
overall area, the PAI would be 2. Hence, successfully fore-
casting a higher percentage of crime activities in smaller 
hotspots would yield higher PAI values (Chainey et  al., 
2008).

PEI, ranging from 0 to 1, compares the actual PAI to 
the maximum possible PAI, indicating how well the pre-
diction captures hotspots relative to the best possible 
outcome. PEI can be calculated using Eq. 5,

where PAImax denotes the maximum value of possible 
PAI (Chainey et al., 2008).

We evaluated the prediction accuracy of each cali-
brated ST-Cokriging model using Correlation, RMSE, 
PAI & PEI by comparing the predicted values with real 
crime data at a bi-weekly temporal scale. To better 
predict and validate the performance of the predic-
tion, we create the validating scenario that crime risk 
for each bi-week was predicted using prior three bi-
weeks crime primary data and tweeter secondary data, 
then the fourth week data were saved as reference data 
for validation. For example, to predict crime risk for 
the 10th bi-week, we used crime data from the 7th to 
9th, and data from the 10th bi-week was reserved for 
subsequent validation. We assessed the models’ per-
formance using predictions for the 10th, 16th, and 
22nd bi-weeks starting on May 5, July 28, and Octo-
ber 20 of 2014. These time periods were strategically 
selected to capture seasonal variations while ensuring 
a consistent temporal interval. Crime predictions for 
weekdays and weekends were modeled separately for 
each crime type.

(4)PAI = ( n
N )/

(
a
A

)

(5)PEI = PAI
PAImax

3 � Results
3.1 � Spatio‑temporal structure of crime types
KDE helps to visualize the intensity of events, making it 
particularly useful for identifying hotspots in tweets. We 
analyzed the filtered tweets for each crime type to map 
their spatial patterns using the kernel density function for 
estimating the probability density of spatial events across 
a surface (Okabe et al., 2009). Cell size of 100 m (Chainey, 
2013) were selected for the density map with the same 
search radius of 2  km as KDE of crime data (Fig.  2) to 
balance the need for detailed resolution and computa-
tional efficiency; this scale is fine enough to capture local 
variations while maintaining a manageable data size for 
analysis. Both the primary variable (crime records) and 
the co-variable (filtered tweets) were processed using 
the kernel density function to ensure consistency in the 
spatial resolution of the variables used for further predic-
tive modeling. Hotspots for street crime-related tweets 
are primarily located in the eastern part of San Jose 
downtown and the northern San Jose, while hotspots for 
tweets related to property crime and vehicle crime are 
concentrated in the eastern part of San Jose downtown 
(Fig. 2).

Using crime density as input, the spatial and temporal 
semi-variograms for both weekday and weekend groups 
regarding the three crime types were estimated sepa-
rately and then combined to spatial–temporal variances. 
Figure  3 depicts spatial and temporal semi-variograms 
and 3-D plots of the spatio-temporal covariance mod-
els for each scenario. Notably, the semi-variogram pat-
terns differ between the spatial and temporal domains. 
The spatial semi-variogram was fitted with a Gaussian 
function based on the likelihood, whereas the temporal 
semi-variogram was fitted with an exponential function 
determined by the lowest residual value of the OLS fit-
ting method and the shape of the semi-variogram (Eqs. 6 
and 7). This tailored model selection approach ensures 
an optimal fit for our data. The OLS-fitted functions for 
the spatial and temporal semi-variograms for three crime 
types are (Table 2):

where the n is the nugget (unexplained randomness), s  is 
the sill (maximum intensity), p(meter) is range (influence 
zone),hs(meter) is spatial distance, and the ht(day) is the 
temporal distance.

The spatio-temporal statistical structure demonstrated 
distinct patterns across varied crime types, highlight-
ing importance for developing refined crime prediction 

(6)γs(hs) = n+ s • [1− exp(−
h2s
p2
)]

(7)γt(ht) = n+ s • [1− exp(−ht
p )
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Fig. 2  Kernel density patterns of crime-related tweets of 2014 in San Jose, California, USA, a street crime on weekdays; b street crime on weekends; 
c property crime on property crime; d property crime on weekends; e vehicle crime on weekdays; f vehicle crime on weekends
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models. Firstly, our analysis reveals a significant differ-
ence between spatial and temporal variograms. Spatial 
semi-variograms consistently exhibited an absence of the 
nugget effect (with the nugget value consistently equating 
to zero), suggesting minimal measurement error within 
the spatial domain. This can be primarily attributed to the 
high resolution of the spatial measurements. Conversely, 
temporal variograms displayed notable nugget effects, 
ranging from 0.98 × 10–6 to 2.37 × 10–5, as delineated 
in Fig.  3. This suggests a greater degree of randomness 
within the temporal domain, which can be attributed to 
the choice of using day-level temporal intervals and not 
further dividing them into hours and minutes.

In addition, the analysis distinguishes the differ-
ent types of data in terms of their range (p) and sill (s) 
effects. Notably, house crime categorized under prop-
erty crime exhibited higher spatial and temporal ranges 

compared to vehicle crime and street crime (such as 
assault and robbery) on weekdays. This implies property 
crime exerts a more extended temporal influence are 
likely due to the increased preparation time associated 
with these crime on weekdays. Furthermore, it is note-
worthy that the spatio-temporal structures vary between 
weekdays and weekends. This variance is particularly 
pronounced in the case of property crime, with signifi-
cant differences observed between these temporal group-
ings—12.60 × 10–5 and 1.42 × 10–5 for spatial sills, and 
2.37 × 10–5 and 0.59 × 10–5 for temporal sills, respectively. 
This variation can be correlated to the differing profiles of 
criminal types involved in property crime during week-
days and weekends, potentially influenced by the rou-
tine presence or absence of inhabitants due to workday 
schedules.

Fig. 3  Spatial and temporal semi–variograms and fitting models for weekly-based periods and 3D plots of spatio-temporal covariance model 
for ST-Cokriging: a-f street crime: a spatial semi–variogram for weekdays, b temporal semi–variogram for weekdays, c 3D plots of spatio-temporal 
covariance model for ST-Cokriging for weekdays, d spatial semi–variogram for weekends, e temporal semi–variogram for weekends, f 3D plots 
of spatio-temporal covariance model for ST-Cokriging for weekends; g-l property crime: g spatial semi–variogram for weekdays, h temporal semi–
variogram for weekdays, i 3D plots of spatio-temporal covariance model for ST-Cokriging for weekdays, j spatial semi–variogram for weekends, 
k temporal semi–variogram for weekends, l 3D plots of spatio-temporal covariance model for ST-Cokriging for weekends; m-r vehicle crime: m 
spatial semi–variogram for weekdays, n temporal semi–variogram for weekdays, o 3D plots of spatio-temporal covariance model for ST-Cokriging 
for weekdays, p spatial semi–variogram for weekends, q temporal semi–variogram for weekends, r 3D plots of spatio-temporal covariance model 
for ST-Cokriging for weekends

Table 2  Parameters of fitting functions for the spatial and temporal semi-variograms for three crime types

Spatial fitting Temporal fitting

Crime type Time period n s p n s p

Street crime weekday 0 7.10 × 10–6 1110.0 2.46 × 10–6 4.45 × 10–6 1.9

weekend 0 6.75 × 10–6 1110.0 0.98 × 10–6 2.12 × 10–6 1.9

Property crime weekday 0 12.60 × 10–5 1332.0 2.37 × 10–5 4.27 × 10–5 3.4

weekend 0 1.42 × 10–5 1100.0 0.59 × 10–5 0.90 × 10–5 2.8

Vehicle crime weekday 0 3.55 × 10–5 1032.0 2.09 × 10–5 3.39 × 10–5 1.8

weekend 0 2.11 × 10–5 1338.0 1.01 × 10–5 0.25 × 10–5 3.4
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For street crime, the spatial range on weekdays (1110) 
is significantly lower than that of property crime (1332), 
implying that the impact zone of street crime is more 
localized and possibly linked to specific hotspots prone 
to such incidents. Temporally, the range is identical on 
both weekdays and weekends, suggesting that the tempo-
ral impact of this crime is stable regardless of the day of a 
week. However, the temporal sill shows a slight increase 
on weekdays (4.45 × 10–6 vs 2.12 × 10–6), which implies a 
higher variability in the timing of this crime during week-
days, possibly due to changes in social activity patterns. 
The spatial sill values for street crime are lower in com-
parison to other two crime types, which could be attrib-
uted to the more impulsive nature of such crime, leading 
to a smaller spread of influence over spatial scale.

Vehicle crime demonstrates the smallest spatial range 
on weekdays (1032) and the largest on weekends (1338) 
among three crime types, indicative of the mobility inher-
ent to this crime. The reduced spatial range on weekdays 
could be a reflection of routine commuting paths and 
concentrated parking areas, while the expanded range on 
weekends might point to a wider dispersion of vehicles as 
people travel to varied destinations or leave cars in less 
secure locations. The temporal sill, however, is higher 
on weekdays than weekends (3.39 × 10–5 vs 0.25 × 10–5), 
which could be attributed to the higher volume of vehi-
cles in use and therefore a greater opportunity for this 
crime. Interestingly, vehicle crime exhibits higher spatial 
sill values on weekdays (3.55 × 10–5), likely reflecting the 
routine of individuals commuting and using their vehicles 
more during the week, thus increasing the opportunity 
for such crime. Conversely, the weekend sees a significant 
drop in the sill (2.11 × 10–5), perhaps due to the decreased 
routine activity, with vehicles less frequently left in vul-
nerable public spaces.

3.2 � Crime prediction and validation
Based on the estimated spatio-temporal structure, the 
ST-Cokriging model predict the crime risk (crime den-
sity with 100 m grid) by incorporating both the histori-
cal crime risks as primary variable and filtered Twitter 
data as the co-variable. Figure  4 visually contrasts the 
predicted weekday crime risk during the 22nd bi-week 
for three crime types. Predicted crime risk maps through 
ST-Cokriging are illustrated in Fig. 4b, d, and f, and the 

actual referencing crime risk maps for these weeks is 
illustrated in Fig. a, c, and e. Figure 5 showcases the pre-
dicted (Fig. 5b, d, and f ) and actual referencing (Fig. 5a, c, 
and e) weekend crime risk distribution during the 22nd 
bi-weeks for three crime types. For a fair comparison, all 
images use a consistent color scale. A close similarity is 
observed between the predicted and referencing crime 
risk for all three crime types.

We carried out further validation against reference by 
calculating the correlation r and RMSE for bi-weeks 10, 
16, and 22, as shown in Tables  3 and 4. For all types of 
crime (street crime, property crime, and vehicle crime), 
the prediction model demonstrates higher accuracy 
when co-variables are incorporated. This is evident on 
both weekdays and weekends, and across all the bi-
weeks observed (bi-weeks 10, 16, and 22). For instance, 
for street crime during weekdays of bi-weeks 22, the pre-
diction with the co-variable has a correlation coefficient 
of 0.5219 and an RMSE of 0.0377, whereas the predic-
tion without the co-variable has a correlation coefficient 
of 0.4230 and an RMSE of 0.1000. The property crime 
category during weekdays of the same bi-weeks, when 
modeled with tweets as the co-variable, produces a corre-
lation coefficient of 0.8803 and an RMSE of 0.0393. With-
out the co-variable, the correlation coefficient drops to 
0.8524 and the RMSE increases to 0.0977. The correlation 
coefficient for vehicle crime prediction during weekdays 
is 0.8939 when including the co-variable and 0.8905 when 
excluding the co-variable. The RMSE is 0.0323 with the 
co-variable and 0.0993 without the co-variable. For street 
crime on the weekend of bi-week 22, the correlation is 
0.3661 (with co-variable) and 0.2859 (without co-varia-
ble), while the RMSEs are 0.0443 and 0.0970, respectively. 
For the property crime category during weekends of this 
bi-weeks, the prediction with the co-variable results in a 
correlation coefficient of 0.7336 and an RMSE of 0.0421. 
In contrast, without the co-variable, the correlation coef-
ficient is 0.7373 with an RMSE of 0.1089. In the weekend 
of bi-weeks 22, the vehicle crime model with the co-
variable produces a correlation of 0.7874 and an RMSE 
of 0.0339. Without the co-variable, the correlation coef-
ficient is 0.7802 with an RMSE of 0.0994.

To conclude, integrating crime-related tweets as a 
co-variable significantly improved predictive accuracy 
for all crime types. Specifically, during weekdays, the 

Fig. 4  Biweekly crime prediction results (weekdays) from ST-Cokriging and validation against actual reference crime risk map: a actual crime 
risk map during weekdays of bi-weeks 22 for street crime; b ST-Cokriging predicted crime risk map during weekdays of bi-weeks 22 for street 
crime; c actual crime risk map during weekdays of bi-weeks 22 for property crime; d ST-Cokriging predicted crime risk map during weekdays 
of bi-weeks 22 for property crime; e actual crime risk map during weekdays of bi-weeks 22 for vehicle crime; f ST-Cokriging predicted crime risk map 
during weekdays of bi-weeks 22 for vehicle crime

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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average increase of correlation coefficient was 15.8% 
for street crime, 1.9% for property crime, and 0.4% for 
vehicle crime. Meanwhile, on weekends, the correlation 
increased by 13.9%, 12.4%, and 6.3% for street crime, 
property crime, and vehicle crime, respectively. The 
RMSE significantly decreased when incorporating crime-
related tweets as a co-variable compared to the model 
without co-variables.

3.3 � Crime hotspots analysis
PAIs and PEIs were computed based on the crime risk 
map to generate spatial distributions of crime hotspots 
for optimized law enforcement resource allocation. For 
each threshold, a map can be generated for crime risk 
hotspots and a highlighted thresholding area were gen-
erated as the predicted police patrolling area. Then hit 
points were calculated as the detected criminal activities 
within these highlighted areas. These hit points were sub-
sequently utilized to derive the PAI metrics at the given 
threshold. By comparing the PAIs at different thresholds, 
the optimal threshold was chosen and the corresponding 
PAI and PEI can be calculated.

PAI curves for ST-Cokriging predictions with and 
without co-variable were compared during weekdays 
and weekends of bi-weeks 22 for street crime, property 
crime, and vehicle crime (Fig. 6). PAI represents the per-
centage of all actual crime events during each bi-weekly 
period that occurred within predicted hotspots, typically 
increasing as the threshold value rises. The inclusion of 
crime-related tweets significantly improved crime pre-
diction performance, as evidenced by the substantial 
increase in PAI values across both weekdays and week-
ends of the bi-weeks. Additionally, Table 5 indicates that 
incorporating crime-related tweets as a co-variable in 
predictions results in a higher PAImax compared to the 
control group where this co-variable is excluded.

Larger hotspots can capture more criminal activi-
ties but pose challenges for efficient police deployment. 
It is essential to identify hotspots of an optimal size to 
enable effective resource allocation. The inflection point 
in the PAI curves serves as a guideline for selecting the 
ideal PAI/PEI, ensuring optimal hotspot identification 
(Chainey et  al., 2008) (Table  6). For example, for week-
days of bi-weeks 22 (vehicle crime), an optimal thresh-
old value of 0.0616 was selected corresponding to a PAI 

inflection point of 1.85 (Fig. 6e). Based on this approach, 
we determined the best thresholds during weekdays and 
weekends in bi-weeks 22 for street crime, property crime, 
and vehicle crime with their associated PEI and PAI val-
ues detailed in Table  6. The highest recorded PAI was 
1.85 during weekdays in bi-weeks 22 for vehicle crime. 
Figure  7 depicts hotspot maps during weekdays in bi-
weeks 22 for street crime, property crime, and vehicle 
crime using optimal PAI thresholds of 0.0112, 0.0392, and 
0.0616, respectively. For street crime, two small hotspots 
are shown in red, with successful predictions (hit points) 
marked in red and non-hit points in green. The hotspots 
accurately predicted 8 out of 47 street crime incidents, 
resulting in a hit rate of 17.02% and covering 3.49% of 
the total area. Property crime hotspots are represented 
by two large and two small areas in red. The model suc-
cessfully predicted 88 out of 304 incidents, with a hit rate 
of 28.94%, and the hotspots spanned 6.80% of the study 
area. Vehicle crime analysis identified two large and one 
small hotspot, with 141 out of 378 crime incidents suc-
cessfully predicted, yielding a hit rate of 37.30% and hit 
area of 13.68%.

4 � Discussion and conclusions
In this study, we used the spatio-temporal Cokrig-
ing crime prediction method to incorporate historical 
crime data and voluntary and geotagged social media 
posts to predict different crime in three major catego-
ries: street crime, property crime, and vehicle crime, 
within the larger metropolitan area of San Jose, located 
in the SFBA. The police historical crime calls were uti-
lized as the primary variable for the prediction, and 
we utilized the ST-Cokriging algorithm to incorporate 
spatio-temporal structure of social media Twitter data 
as the co-variable for predictions of different crime cat-
egories. The results indicate that including geotagged 
crime-related tweets as the co-variable alongside histor-
ical crime data significantly improved crime prediction 
accuracy in San Jose for case study year, demonstrating 
the value of combining social media content with tradi-
tional crime data for enhanced forecasting. This study 
provides new findings and methods that explore the 
integration of multi-source digital data to further refine 
the predictive capabilities of crime forecasting models. 
By leveraging the voluntary, geotagged, and dynamic 

(See figure on next page.)
Fig. 5  Biweekly crime prediction results (weekends) from ST-Cokriging and validation against actual reference crime risk map: a actual crime risk 
map during weekends of bi-weeks 22 for street crime; b ST-Cokriging predicted crime risk map during weekends of bi-weeks 22 for street crime; c 
actual crime risk map during weekends of bi-weeks 22 for property crime; d ST-Cokriging predicted crime risk map during weekends of bi-weeks 
22 for property crime; e actual crime risk map during weekends of bi-weeks 22 for vehicle crime; f ST-Cokriging predicted crime risk map 
during weekends of bi-weeks 22 for vehicle crime
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Fig. 5  (See legend on previous page.)
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nature of tweets and identifying different keywords to 
model social responses to the three categories of crime, 
our model offers a more comprehensive understanding 
of crime patterns, outperforming traditional method-
ologies. It demonstrates that social media information 
can effectively aid in modeling crime patterns in both 
spatial and temporal contexts. This methodology holds 
great potential for broader applications, such as opti-
mizing police patrol routes, identifying high-risk areas 
for targeted interventions, and supporting urban plan-
ning efforts to design safer communities.

This study extends the analysis of a previous case 
study by investigating three major crime categories 
across a larger metropolitan area with diverse crime 
activities. This additional modeling of spatial and tem-
poral dependency and autocorrelation has revealed dis-
tinct spatial–temporal patterns in the semivariograms 
for the three crime types. The results suggest that 
property crime has a longer temporal impact, likely 
due to the increased preparation time required during 
the week. Vehicle crime initially displayed the highest 
prediction accuracy using historical crime data alone, 
suggesting a strong reliability in traditional methods for 
this crime category. However, the incremental improve-
ment in accuracy with the inclusion of crime-related 
tweets for this category was minimum. Despite the fact 
that social media data offers some enhancement, its 
impact is relatively limited when considered in the con-
text of vehicle crime, which is already well-predicted. 
In contrast, street crime had the lowest prediction 
accuracy when based solely on historical crime data; 
however, the integration of social media data yielded a 

substantial increase in predictive accuracy. The signifi-
cant improvement features the value of real-time and 
volunteered geographic information in understand-
ing and forecasting more complex and less predictable 
crime types. The predictive accuracy of property crime 
was moderate both with and without tweet data. This 
suggests a certain level of predictability inherent to 
these crimes, which is not substantially enhanced nor 
diminished by the addition of social media data.

An additional innovative aspect of this study is the use 
of a dual approach for filtering geotagged crime-related 
tweets, combining keyword-based methods with manual 
review to enhance the accuracy of crime predictions. The 
keyword filtering process involved selecting tweets based 
on predefined keywords for various crime categories, 
such as "assault," "robbery," and "theft." However, rely-
ing solely on keyword filtering can introduce noise into 
the dataset due to the broad nature of some terms. To 
address this, a manual review step was implemented to 
refine the dataset, ensuring that only the most relevant 
tweets were included in the analysis. We employed a 
supervised method to further filter out tweets contain-
ing crime-related keywords which were related to crime 
events. The filtered dataset could serve as training data 
for an AI model, enabling future integration of the Large 
Language Model (LLM). This would allow for real-time 
fine-tuning of crime-related keywords and automatically 
filtering social media posts for the next step in predic-
tion. Such an approach would enable crime prediction 
to be more automated and in real-time, utilizing sepa-
rate models for street crime, vehicle crime, and property 
crime, each designed to account for distinct spatial and 

Table 3  Statistical tests comparing ST-Cokriging predictions against reference data for three crime types during weekdays in bi-weeks

Street crime Property crime Vehicle crime

w/co-variable w/o co-variable w/co-variable w/o co-variable w/co-variable w/o co-variable

r RMSE r RMSE r RMSE r RMSE r RMSE r RMSE

Weekdays in bi-weeks 10 0.5012 0.0377 0.3381 0.1003 0.8240 0.0358 0.8088 0.1007 0.8616 0.0372 0.8613 0.1000

Weekdays in bi-weeks 16 0.6038 0.0459 0.3916 0.1001 0.8321 0.0351 0.8184 0.1007 0.8976 0.0312 0.8886 0.1016

Weekdays in bi-weeks 22 0.5219 0.0378 0.4230 0.1000 0.8802 0.0393 0.8524 0.0977 0.8939 0.0323 0.8905 0.0993

Table 4  Statistical tests comparing ST-Cokriging predictions against reference data for three crime types during weekends in bi-weeks

Street crime Property crime Vehicle crime

w/co-variable w/o co-variable w/co-variable w/o co-variable w/co-variable w/o co-variable

r RMSE r RMSE r RMSE r RMSE r RMSE r RMSE

Weekends in bi-weeks 10 0.4151 0.0448 0.2482 0.0993 0.7219 0.0346 0.5910 0.0986 0.7599 0.0382 0.7252 0.1008

Weekends in bi-weeks 16 0.4479 0.0440 0.2772 0.1000 0.7621 0.0411 0.5174 0.0988 0.7966 0.0378 0.6472 0.1007

Weekends in bi-weeks 22 0.3661 0.0443 0.2859 0.0970 0.7336 0.0421 0.7373 0.1089 0.7847 0.0339 0.7802 0.0994
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Fig. 6  PAI curves for ST-Cokriging predictions of crime risks in bi-weeks 22 (predictions with and without co-variable, X-axis: distance; Y-axis: PAI): 
a weekdays for street crime; b weekends for street crime; c weekdays for property crime; d weekends for property crime; e weekdays for vehicle 
crime; f weekends for vehicle crime

Table 5  PAImax for ST-Cokriging predictions of crime risks with/without co-variable in bi-weeks 22 for three crime types

PAImax (weekdays of bi-weeks 22) PAImax (weekend of bi-weeks 22)

w/co-variable w/o co-variable w/co-variable w/o co-variable

Street crime 1.80 1.09 1.16 1.07

Property crime 2.19 1.52 1.85 1.38

Vehicle crime 2.27 1.65 2.47 1.78
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temporal dependency and autocorrelations. This study 
represents a pioneering method that enhances the differ-
entiation and modeling of various crime types.

Police phone call records were utilized as a proxy for 
crime data as the primary variable in the study. While 
these records do not represent actual crime data, they 
are closely aligned with crime incidents as many calls 
involve emergency situations or reports of ongoing crim-
inal activities. The police call data captures real-time or 
near-real-time responses to incidents that often lead to 
formal crime reports. This makes them a valuable source 
of information, offering immediate insights into crimi-
nal behaviors. In addition, our findings revealed that the 
predictive accuracy for the three crime types was lower 
on weekends compared to weekdays. This discrepancy 
may be due to the increased variability in social behav-
iors during weekends, such as larger gatherings, night-
life activities, and alcohol consumption, which can lead 
to more spontaneous or unpredictable crime patterns. 
Weekdays follow routine activities and schedules that 
create consistent patterns, while weekends are more 
unpredictable, making crime prediction models less 
effective. Weekends consist of only two days, so there are 

fewer crime incidents recorded than on weekdays when 
there is a greater amount of data available.

This study has several limitations. First, using Twitter 
data may introduce multiple data quality issues. Sam-
pling bias arises because the platform captures only a 
subset of the population, often overrepresenting certain 
demographic or interest groups while underrepresenting 
others. In addition, geolocation bias further limits repre-
sentativeness, as only about 1% of tweets are geotagged. 
This lack of spatial information can distort spatial analy-
ses, given that users who share their location may differ 
systematically in age, socioeconomic status, or online 
behavior from those who do not. Moreover, relying solely 
on Twitter may overlook complementary insights avail-
able from other social media platforms. Future research 
could enhance prediction accuracy by integrating multi-
platform social media data. In addition to our bi-weekly 
prediction scheme (using the prior three bi-weekly peri-
ods to predict the fourth), we conducted a sensitivity 
analysis with weekly and monthly windows—specifically, 
three prior weeks to predict the fourth week, and three 
prior months to predict the fourth month—using the 
same model specification and hyperparameters. Across 

Table 6  The chosen threshold and corresponding PEI of bi-week 22 for three crime types

Optimal threshold (bi-weekday) Optimal threshold (bi-weekend)

Threshold PEI PAI Threshold PEI PAI

Street crime 0.0112 0.73 1.32 0.0160 0.91 1.06

Property crime 0.0392 0.80 1.76 0.0360 0.88 1.63

Vehicle crime 0.0616 0.81 1.85 0.0544 0.72 1.78

Fig. 7  Predicted crime hotspots and actual location of crime incidents during weekdays in bi-weeks 22, 2014. a street crime, b property crime, c 
vehicle crime
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these alternatives, we observed similar predictive accu-
racy, indicating that the model’s performance is robust to 
the temporal window choice and that the way we capture 
temporal autocorrelation is not materially affected by 
shifting the window length.

In conclusion, this study employed crime predic-
tion modelling by integrating geotagged crime-related 
tweets as a co-variable alongside historical crime data 
within ST-Cokriging framework. The method was 
applied to crime risk predictions of three crime cate-
gories during both weekdays and weekends in a major 
metropolitan area of concern (San Francisco Bay Area). 
Our findings offer valuable insights into the distinct 
dynamics of criminal activities over time and space 
across different crime types. The integration of social 
media data as a co-variable significantly improved the 
accuracy of crime predictions, outperforming models 
based solely on historical crime data. This demonstrates 
the value of crowd-sourced geotagged information in 
refining predictive models and strengthening crime 
alert mechanisms. The findings highlight the potential 
of social media responses to improve real-time crime 
detection and inform evidence-based police enforce-
ment. The strong predictive performance underscores 
the potential of this integrated approach, and empha-
sizes the need to integrate additional machine learn-
ing, large language models (LLMs), and AI techniques 
to more accurately capture the complex and multifac-
eted nature of criminal behavior. This study contributes 
to the advancement of crime prediction by revealing 
distinct spatial and temporal dynamics among street, 
property, and vehicle crimes, thereby providing action-
able insights for law enforcement and urban planners 
to design targeted prevention strategies—such as allo-
cating patrol resources based on crime type, improv-
ing environmental design in recurrent hotspots, and 
strengthening community-based interventions to 
enhance public safety.
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