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Abstract

Crime prevention requires accurate prediction of the spatial and temporal distribution of criminal activities to effec-
tively allocate law enforcement resources. However, many trending crime prediction algorithms lack comprehen-
sive spatio-temporal structures and often consider only single input variables. This study innovatively using in ST-
Cokriging method integrated both historical crime records as the primary variable and crime-related geo-tagged
Twitter data as the co-variable for crime prediction. The predictive method has been specifically developed to assess
crime risk across three major crime types—street crime, property crime, and vehicle crime—and applied in the San
Francisco Bay Area (SFBA), California, a region characterized by high development and heightened crime sensitivity,
for both prediction and validation. The results indicate that incorporating social media data into a spatio-temporal sta-
tistical method improves the associations between predicted and actual crime risk, reduced the Root Mean Squared
Error (RMSE), and enhanced the identification of crime risk areas for both weekdays and weekends across three crime
types compared to the method without the co-variable. This study presents a new multi-variable approach to more
accurately predict crime, enabling law enforcement proactively address crime of varying nature in urban areas.
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1 Introduction

Accurate crime prediction enables a strategic and pro-
active approach to public safety, allowing law enforce-
ment agencies to allocate their resources efficiently,
anticipate criminal activities, and potentially prevent
them before they occur (Braga et al., 2014; Chainey et al,,
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2008; Mohamad Zamri et al., 2021). However, accurate
crime prediction is challenging due to the complex and
variable nature of spatial and temporal crime patterns.
Crime incidents often exhibit significant spatial cluster-
ing, making it difficult to generalize predictions across
different neighborhoods or cities. Also, temporal pat-
terns can fluctuate during specific times, weekdays or
weekends, and special events. Variability in data quality,
reporting practices, and the influence of socio-economic
factors further exacerbate these challenges, requiring
sophisticated computational models to accurately cap-
ture and predict crime trends (Ferreira et al., 2012; Wang
et al., 2019). Incorporating both spatial and temporal pat-
terns in crime prediction is imperative, as it provides a
comprehensive understanding of crime dynamics, sig-
nificantly increasing the accuracy and effectiveness of
predictive models (Du & Ding, 2023; Hu et al., 2018).
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A variety of crime prediction methodologies have been
developed over the past decades. Traditionally, crime sta-
tistics and hotspot analyses have relied on single input
crime data to identify crime-prone areas (Amerio &
Roccato, 2005; Braga et al., 2014). Then, crime predic-
tion methodologies have evolved to integrate multiple
variables, recognizing that crime activity is influenced
by a complex interplay of different factors (Tasnim et al.,
2022). For example, machine learning models that con-
sider crime data and ten urban indicators can increase
the accuracy of homicide prediction in Brazil from
2001 to 2020 (Alves et al., 2018). It has been found that
the spatio-temporal graph neural network framework
could achieve both high predictive accuracy and strong
interpretability, outperforming existing models in crime
prediction while effectively handling data sparsity and
missing information (Tang et al., 2023). Moreover, the
transformer-based model could enhance the telecommu-
nication network crime predictions in China and various
crimes such as street crime, property crime, and personal
offense in the United States (Butt et al., 2025; Shi et al.,
2023). Additional studies have explored using geo-tagged
Twitter (now known as X) data as additional variables
to enhance the modeling of criminal activity distribu-
tions (Bendler et al., 2014; Corso et al., 2016; Liu et al.,
2022). The results demonstrated that this approach out-
performed traditional methods by incorporating these
additional variables. However, traditional crime predic-
tion methods often fail to integrate spatial and temporal
dimensions, limiting their ability to accurately capture
patterns and forecast future crime activities. Recent
advancements in methodologies further incorporate both
spatial and temporal information into the multivariable
crime prediction model to further improve performance.
Despite substantial advancements in crime prediction
methodologies, there exists a literature gap in using the
multivariable spatio-temporal crime prediction model
that combines both historical crime data and social
media data for crime prediction.

In this study, we developed a new spatio-temporal
Cokriging (ST-Cokriging) method to jointly incorporate
historical crime call data and Twitter data for enhanced
crime prediction in large urban areas such as San Jose,
California. By utilizing both traditional crime reports and
real-time social media data, our approach aims to over-
come limitations of single-source crime modeling and
improve spatial coverage and predictive accuracy. The
crime call data were used as the primary variable in the
ST-Cokriging, while Twitter data—filtered using crime-
related keywords—served as the secondary co-variable.
We then designed an ST-Cokriging algorithm (detailed
in the Methods section) that rigorously accounts for the
spatio-temporal statistical structure of both datasets to
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generate improved crime predictions. Previous research
suggests that integrating secondary variables can enhance
crime prediction through multi-source data fusion (Yang
et al., 2020; Yu et al., 2020).

The integration of social media into predictive mod-
els of social dynamics has emerged as a transformative
approach, as volunteered geographic information pro-
vides real-time insights and a more nuanced understand-
ing of underlying social factors (Ahn & Spangler, 2014;
Rousidis et al., 2020; Schoen et al., 2013; Wang et al.,
2020). Human activities, as reflected in social media
interactions and community behaviors, show a significant
correlation with crime patterns, affecting both the preva-
lence and nature of various criminal activities (Kadar &
Pletikosa, 2018; Vomfell et al., 2018). Research has shown
that social media can provide real-time insights into
human behavior and societal trends, which, in turn, influ-
ence crime patterns (Vomfell et al., 2018). Twitter, with
its real-time data and rich user content, provides valuable
insights into social dynamics, making it ideal for predic-
tive models (Gayo-Avello, 2013; Zhang et al., 2014; Zheng
et al., 2018). For instance, Twitter has proven effective in
mapping motor vehicle thefts in Mexico City, while prop-
erty crime like burglaries and larcenies in Montreal were
found to correlate with geo-tagged Twitter sentiment
from 2011 to 2017 (Da Silva et al., 2019; Pina-Garcia &
Ramirez-Ramirez, 2019). Integrating social media data
with historical crime data meaningfully improves hot-
spot prediction—e.g., CrimeTelescope achieved ~5.2%
higher accuracy in New York city, while enabling richer,
timely situational awareness via interactive maps (Yang
et al,, 2018). Additionally, Twitter data can augment tra-
ditional community channels in South Africa by enabling
rapid, transparent crime reporting and data collection
that helps detect patterns, support prediction, and guide
enforcement where constant policing is impractical
(Featherstone, 2013). Collectively, these studies under-
score social media as a complementary, real-time data
source that strengthens crime monitoring, hotspot pre-
diction, and operational decision-making across diverse
contexts.

While various studies have focused on predicting
specific crime such as assaults (Liu et al., 2022; Uitten-
bogaard & Ceccato, 2012), robberies (Chainey, 2013),
or burglaries (Pifia-Garcia & Ramirez-Ramirez, 2019)),
few have explored predictions of a wide range of crime
types. Integrating multivariable spatio-temporal meth-
ods can provide a more holistic understanding of crime
patterns and improve prediction accuracy across dif-
ferent criminal activities. Given the differing crime pat-
terns between weekdays and weekends (Pifa-Garcia
& Ramirez-Ramirez, 2019; Yang et al., 2020), this study
separately tested predictions and validations for three
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crime types (street crime, property crime, and vehicle
crime) for weekdays and weekends. The large volume of
Twitter data from the study area was filtered using key-
words tailored to each specific crime type. The algorithm
explicitly calculated and considered the unique spatial
and temporal auto-dependencies within the spatial and
temporal domains, marking the first effort to estimate
these differences among street crime, property crime,
and vehicle crime in this context. The primary aim is to
deepen the understanding of crime dynamics, as different
crime types follow distinct patterns influenced by factors
such as urban layout, social behavior, and law enforce-
ment practices. Moreover, tailoring predictive models
to specific crime types enables law enforcement agen-
cies to implement more targeted interventions and allo-
cate resources more effectively by accurately identifying
where and when particular types of crime are most likely
to occur.

2 Data and method

2.1 Study area

San Jose, located in the heart of Silicon Valley, California,
has emerged as a global hub for high-tech and internet
industries, propelling it to become California’s fastest-
growing economy since the 1990s (Zandiatashbar &
Kayanan, 2020). It is the third-largest city in the state
and the 12th largest city by population in the United
States, boasting a population of approximately 1.01 mil-
lion (Berry-James et al., 2020). Despite its reputation as
a prosperous tech hub, the city’s economic growth and
population accumulation have brought urban challenges,
including an escalating crime rate that correlates with
a widening wealth gap (Yuan et al, 2022, 2024). From
2013 to 2022, the violent crime rate in San Jose increased
from 326.6 to 516.8 per 100,000 people, while its prop-
erty crime rate reached 2597.5 per 100,000 population
in 2022, surpassing the national level of 1954.4 (SJPD,
2023b; U.S. Department of Justice—Federal Bureau of
Investigation, 2023). This juxtaposition of rising pros-
perity alongside increasing crime rates underscores the
complex nature of urban crime dynamics. Factors such
as socio-economic changes, neighborhood characteris-
tics, and evolving social trends intricately weave together,
influencing the city’s crime patterns. This context pre-
sents a rich and multifaceted backdrop for examining
the spatial and temporal dimensions of crime in San Jose,
offering insights into how economic progress and urban
development intersect with public safety challenges.

We applied the Urban Growth Boundary of San Jose,
provided by the Bureau of Land Management, County of
Santa Clara, as the study boundary to extract the San Jose
urban region (Fig. 1). Established in response to rapid
urban expansion between 1950 and 1970, this boundary
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aims to regulate sprawl and mitigate environmental
impacts. The San Jose urban region is also an important
planning framework in the San Jose 2040 General Plan,
to which this research may provide valuable urban devel-
opment insights. This boundary covers an area of 370.3
km?, encompassing most of the population activities and
economic areas, and encapsulates 99.3% of all crime data
in San Jose.

2.2 Crime data and preprocessing

The crime data for San Jose was sourced directly from
the San Jose Police Department’s phone call records,
with records in 2014 selected for the case study (SJPD,
2023a). Dataset in 2014 was chosen for the study due
to the early stages of Silicon Valley’s economic growth,
which resulted in significant increases in crime dur-
ing this period. The dataset includes a catalog of phone
calls reporting various crime across the city, with each
crime’s address digitized. Each record is associated with
a specific crime incident and includes key attributes such
as call type, crime location, crime activity type, weapon
involvement, and timestamp information. The crime
locations reported in phone call records were geocoded
using Geoapify (Geoapify, 2024), providing precise geo-
graphical coordinates along with temporal and crime
reporting information for further spatio-temporal analy-
sis. In 2014, San Jose recorded a total of 313,817 crime-
related phone calls.

Three major categories of crime have been selected
from the dataset: street crime, property crime, and
vehicle crime. The street crime included 2,010 records
encompassing “strong arm robbery’, “strong arm robbery
" “robbery’, “armed

(combined event)’, “armed robbery’,
", “purse snatch robbery’, “rob-
; “assault

robbery (combined event)’,

bery, gang related”, “assault with deadly weapon’,

with deadly weapon (combined event)’, “assault’, “assault
with deadly weapon, gang’, “assault and battery’, and
“assault on an officer” Property crime incorporated
11,563 calls, with categories ranging from “burglary
report’, “burglary, “vehicle burglary’, “theft’, “grand theft’,
“petty theft prior conviction’, “theft of recyclables’, “petty
theft’, and “theft, gang related” Finally, vehicle crime,
with 12,778 records, included “misdemeanor hit and run’,
“felony hit and run’, “stolen vehicle’, and “stolen vehicle
gang related”.

Spatial and temporal patterns of criminal activities
vary between weekdays and weekends as the have differ-
ent spatial and temporal patterns (Newton et al., 2008;
Uittenbogaard & Ceccato, 2012; B. Yang et al,, 2020). A
higher frequency of the three identified crime types is
observed on weekends—specifically Saturday (day 6 in
a week) and Sunday (day 7 in a week)—compared with
weekdays, as reflected in their spatial distributions. Given
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Fig. 1 Street crime, property crime, and vehicle crime distributions overlay with city map in San Jose in 2014

these variations, it is crucial to categorize crime data
distinctly into weekday and weekend groups for more
accurate analysis. Following the division adopted in pre-
vious studies, the weekday category spans from Monday
at 12:00 AM to Friday at 11:59 PM local time, enabling a
comprehensive analysis of crime patterns during regular
workdays. The weekend category covers the period from
Saturday at 12:00 AM to Sunday at 11:59 PM local time,

capturing the distinct dynamics of crime incidents that
typically occur during these days. The data for the three
crime types was aggregated to generate a crime risk map
using the kernel density function (DeVeaux et al., 1999).
A cell size of 100 m was applied for the kernel density
estimation (KDE) to optimize both the predictive perfor-
mance and practical applicability in policing and crime
prevention strategies (Chainey, 2013; Du & Ding, 2023).



Huang et al. Computational Urban Science (2025) 5:72

A fixed search radius (bandwidth) of 2 km was applied to
ensure appropriate smoothing and capture broader spa-
tial patterns in crime activities, covering approximately
1,257 grid cells (100 m x 100 m) within the KDE surface.
This approach transformed discrete crime points into
continuous risk maps, with each pixel indicating crime
risk across the study area (Chainey, 2013).

2.3 Social media data collection and filtering

In this study we take consideration of the Twitter data
as the co-variable in ST-Cokriging to enhance the crime
prediction results, as the Twitter data has been widely
used for crime activities predicting and social behavior
modeling (Gayo-Avello, 2013; Lan et al., 2019; Vomfell
et al,, 2018). The Twitter data employed in this study was
collected using the Twitter Academic API, a resource
offered by Twitter that allows for extensive and granular
data gathering. For this study, our focus was on geotagged
tweets originating from San Jose in 2014. Geotagged
tweets are those where the user has opted to include their
geographic locations (longitude/latitude) at the time of
posting, enabling us to capture spatial information tied to
each tweet. There were 1,048,575 geotagged tweets col-
lected via the API in San Jose, California in 2014. Each
geo-tagged tweet was logged with its tweet ID, username,
creation time, and full text.

Since the historical crime data is associated with
specific crime types, a keyword-based strategy was
employed to filter tweets corresponding to each type
of criminal activity. We meticulously developed a set of
keywords for each crime category to accurately capture
crime-related tweets. The design of our dataset ensures
a close reflection of the unique characteristics of each
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crime type studied, along with their corresponding spa-
tio-temporal patterns. For instance, to identify tweets
related to street crime, the dataset was filtered using key-
words such as "assault,” "robbery," "robbed," and "assault-
ing", etc. The comprehensive list of the keywords used is
presented in Table 1 below. Following the keyword filter-
ing, a manual review was conducted to further refine the
selection of relevant tweets. These combined processes
helped pinpoint 190 tweets related to street crime, 720
tweets related to property crime, and 408 tweets related
to vehicle crime (Lal et al., 2020).

2.4 ST-Cokriging method

The Kriging method is a traditional geostatistical inter-
polation technique that models spatial autocorrela-
tion to minimize estimation variance. Cokriging is an
extension introduced by Journel & Huijbregts (1978)
improves interpolation by incorporating spatially cor-
related secondary co-variable, enhancing predictions
in environmental and resource modeling (Goovaerts,
1997). ST-Cokriging algorithm adopts a spatio-temporal
statistical model to consider multi-sources. The histori-
cal crime data are considered as the primary variable of
the prediction, while the auxiliary data that correlated
with crime were modeled as the co-variable. We innova-
tively developed the ST-Cokriging to incorporate filtered
Twitter data as the co-variable by adding the secondary
co-variable with spatiotemporal structure, which con-
sider social behavior patterns in the spatial and temporal
domain. The spatio-temporal structure for ST-Cokriging
considering the both space and time aspects were mod-
eled using the mathematical framework (Eq. 1):

Table 1 Keywords and tweet filtering process for the three crime types

Crime type Keywords Filtered tweet Count Re-filtered Tweet
(Keywords filtering) ~ Count (Manual
Review)
Street crime "assault’, "assaults', "assaulting", "assaulted’, "rob", "robbed", "robs", "robbing", "robbery", 3229 720
"robberies" "robber", "robbers
Property crime  "theft", "thief", "thieves', "thefts’, "stole’, "steal’, "stolen’, "break in", "break-in", "breaking- 1035 408
and-entering’, "forced entry", "unlawful entry", "intruder", "invade", "invasion’, "broke in",
"broken in’, "breaks in", "burglary’, "larceny’, "larcenies’, "burglarize', "burglaries", "burglar-
ized', "burgled", "Burglary-in-Progress", "burglarizing"
Vehicle crime "hijack’, "Joyriding", "Carjacking", "joyride", "carjack’, "hijacking", "hijacked", "hit and run’, 588 190

"hit & run", "hit and killed", "hit and runs”, "hit-and-run", "hit&un", "car accident”, "car
injury”, "car injuries’, "car victim', "crash", "driving drunk’, "drunk driver’, "over speeding’,
"speeding’, "rear ending", "road accident’, "road rash’, "vehicle accident", "vehicle crash’,
"vehicle injury", "vehicle injuries", "vehicle victim", "hit a car’, "car collision", "vehicle colli-
sion”, "hit a person', "hit a parked car', "speeding’, "break’, "pedestrian crash"

["hit", "hitting", "hits"] and* ["run’, "running’, "ran", "escape’, "escaped", "flee’, "fleeing"]

["car’, "cars’, "vehicle", "vehicles", "motor’, "auto", "motorcycle"] and ["theft’, "thief",

"thieves", "thefts", "stole", "steal’, "stolen’, "gone", "GPS tracking"]

"The tweets need to have at least one keyword from each of the 2 groups connected by “AND”
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Z1 (x0, to) = T ZlNz‘l o Zy (si ti) + S B Za (e, t1) (1)

where 21 (x0, to) is the predictor of the criminal activities
at pixel location x( and at time £g; The time point j is the
predicting time point in the temporal domain. Zi(sy, t;)
denotes the primary variable of the historical crime data
at location s;; at time series ;,j =1,...,N;,i=1,...,T
5 Zo (uk, t/) denotes the co-variable of the crime related

Twitter data at location u; at time t and k = 1,..., M.
Two sets of weights {oz,'j j=1,..,Ni=1,..., T} and
{ﬂk k=1,... ,M} were obtained by solving the spatio-
temporal covariance matrix for the best unbiased linear
predictor. In this ST-Cokriging framework, the input data
consist of: (1) Primary variable — KDE-generated raster
surfaces representing the spatial intensity of historical
crime data over time, and (2) Secondary co-variable —
KDE surfaces derived from crime-related Twitter data.
The output of the ST-Cokriging model is a spatiotempo-
ral prediction surface—a raster grid estimating the crime
intensity at each location xp and time #,. For different
types of crime activities, the primary variable was derived
from the historical crime maps at specific time points,
while the co-variable represents the spatial-temporal
pattern of crime-related tweets at a predicting time. The
spatio-temporal semi-variogram are calculated first to
estimate the different spatio-temporal patterns of the
street, property, and vehicle crime, respectively.

The linear system in ST-Cokriging is solved as a linear
system to get the weights for the prediction. In particu-
lar, the Cokriging variance for the spatio-temporal pre-
diction predictor 21 (%0, to) can be computed as stated
in previous literature (Cressie & Huang, 1999; Kyriak-
idis & Journel, 1999; Snepvangers et al., 2003). Also, the
uncertainty associated with the prediction is also cal-
culated based on the spatial-temporal distribution of
the data. This methodology allows for the prediction of
crime occurrences in a given spatial and temporal con-
text considering the relationship between crime data
and auxiliary tweet variables. This study models the dif-
ferent types of crime data, including street crime, prop-
erty crime, and vehicle crime.

To estimate the spatio-temporal structures for differ-
ent types of crime vary spatial and temporal in depend-
ence, the study employs separate spatial and temporal
semi-variograms to estimate the spatio-temporal struc-
tures for crime types within and between a primary
variable and the co-variable. A semi-variogram is a sta-
tistical tool used in spatial statistical analysis to quan-
tify the spatial and temporal correlation or dependence
between data points at varying distances. Spatial semi-
variograms are calculated using Eq. 2:
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y(hs) = sxis ot [Z(s1,01) — Z(sy + hs, 1))
(2)
where N (k) is the number of randomly chosen pairs
for same type of the crime within the fixed spatial dis-
tance of /s, measures the average spatial variation of
crime data points based on spatial distance, while tempo-
ral semi-variograms are calculated using Eq. 3:

Ny
ve(he) = ﬁ@) doiml

[Z(s1,01) = Z(s1, 01 + )P

3)
where N (/) is the number of data pairs of same crime
type which are located at the same location while sepa-
rated by /4, period, consider the time difference between
data points at the same location. Based on equations
above, spatial and temporal semi-variograms were
derived for the primary variable for three types of crimi-
nal activities. Thus, for each type of crime—street crime,
property crime, and vehicle crime—spatial and temporal
semi-variograms were calculated separately for week-
days and weekends. A least square fitting method was
employed to determine the best fitting models for both
spatial and temporal semi-variograms, including Gauss-
ian, exponential, spheric, or linear models. Because pre-
vious study has shown that crime incidents typically
exhibit no consistent directional preference, as offenders
tend to operate or move within localized areas without
a predominant spatial orientation (Gilmour & Higham,
2022). Once the spatial and temporal semi-variograms
were estimated and fitted, they were combined to the
spatio-temporal structure to measure how the variance
between data points changes as the distance and time
lag between them increases. Covariance matrices were
derived for both the primary and co-variable, consider-
ing spatial and temporal distances. This matrix aids in
the understanding of how primary and co-variable relate
over space and time, ensuring a consistent temporal
dimension and positive definiteness in their relationship.
Spatio-temporal covariances have the property that they
can be written as a product or the sum of a valid spatial
covariance and a valid temporal covariance. To ensure an
optimal balance between efficiency and effectiveness, the
valid spatial covariance model and valid temporal covari-
ance model were combined in product form (Yang et al.,
2020).

2.5 Accuracy evaluation

The effectiveness of the ST-Cokriging prediction was
evaluated using the Pearson Correlation Coefficient
(r), Root Mean Squared Error (RMSE), as well as PAI
(Prediction Accuracy Index) and PEI (Prediction
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Efficiency Index) which are commonly used evalua-
tion metrics to assess the effectiveness of spatial crime
forecasting models (Chainey et al., 2008). r (Pearson)
measures the correlation between predicted and actual
data, while RMSE measures the differences between
predicted and actual data. PAI assesses how effectively
the prediction captures crime hot-spots, considering
the ratio of crime successfully predicted within a hot-
spot area to the total area of interest. PAI can be calcu-
lated using Eq. 4,

PAI = (#)/(4) (4)

where 7 represents the number of crimes accurately pre-
dicted within the identified hotspot area, N is the total
number of crimes during the prediction period, a denotes
the area of the crime hotspots, and A is the total area of
the region under study. For example, if the model can
accurately predict 80% of all crime activities in 40% of the
overall area, the PAI would be 2. Hence, successfully fore-
casting a higher percentage of crime activities in smaller
hotspots would yield higher PAI values (Chainey et al.,
2008).

PEL ranging from O to 1, compares the actual PAI to
the maximum possible PAI, indicating how well the pre-
diction captures hotspots relative to the best possible
outcome. PEI can be calculated using Eq. 5,

PEI = 5, (5)
where PAI,,;, denotes the maximum value of possible
PAI (Chainey et al., 2008).

We evaluated the prediction accuracy of each cali-
brated ST-Cokriging model using Correlation, RMSE,
PAI & PEI by comparing the predicted values with real
crime data at a bi-weekly temporal scale. To better
predict and validate the performance of the predic-
tion, we create the validating scenario that crime risk
for each bi-week was predicted using prior three bi-
weeks crime primary data and tweeter secondary data,
then the fourth week data were saved as reference data
for validation. For example, to predict crime risk for
the 10th bi-week, we used crime data from the 7th to
9th, and data from the 10th bi-week was reserved for
subsequent validation. We assessed the models’ per-
formance using predictions for the 10th, 16th, and
22nd bi-weeks starting on May 5, July 28, and Octo-
ber 20 of 2014. These time periods were strategically
selected to capture seasonal variations while ensuring
a consistent temporal interval. Crime predictions for
weekdays and weekends were modeled separately for
each crime type.
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3 Results

3.1 Spatio-temporal structure of crime types

KDE helps to visualize the intensity of events, making it
particularly useful for identifying hotspots in tweets. We
analyzed the filtered tweets for each crime type to map
their spatial patterns using the kernel density function for
estimating the probability density of spatial events across
a surface (Okabe et al., 2009). Cell size of 100 m (Chainey,
2013) were selected for the density map with the same
search radius of 2 km as KDE of crime data (Fig. 2) to
balance the need for detailed resolution and computa-
tional efficiency; this scale is fine enough to capture local
variations while maintaining a manageable data size for
analysis. Both the primary variable (crime records) and
the co-variable (filtered tweets) were processed using
the kernel density function to ensure consistency in the
spatial resolution of the variables used for further predic-
tive modeling. Hotspots for street crime-related tweets
are primarily located in the eastern part of San Jose
downtown and the northern San Jose, while hotspots for
tweets related to property crime and vehicle crime are
concentrated in the eastern part of San Jose downtown
(Fig. 2).

Using crime density as input, the spatial and temporal
semi-variograms for both weekday and weekend groups
regarding the three crime types were estimated sepa-
rately and then combined to spatial-temporal variances.
Figure 3 depicts spatial and temporal semi-variograms
and 3-D plots of the spatio-temporal covariance mod-
els for each scenario. Notably, the semi-variogram pat-
terns differ between the spatial and temporal domains.
The spatial semi-variogram was fitted with a Gaussian
function based on the likelihood, whereas the temporal
semi-variogram was fitted with an exponential function
determined by the lowest residual value of the OLS fit-
ting method and the shape of the semi-variogram (Egs. 6
and 7). This tailored model selection approach ensures
an optimal fit for our data. The OLS-fitted functions for
the spatial and temporal semi-variograms for three crime
types are (Table 2):

Yolhs) = n+ 5 o [1 = exp(—15)] ©)

yi(he) = n+se[1—exp(=) (7)

where the # is the nugget (unexplained randomness), s is
the sill (maximum intensity), p(meter) is range (influence
zone),hi;(meter) is spatial distance, and the /4 (day) is the
temporal distance.

The spatio-temporal statistical structure demonstrated
distinct patterns across varied crime types, highlight-
ing importance for developing refined crime prediction



Huang et al. Computational Urban Science (2025) 5:72 Page 8 of 18

Street crime on weekdays
High : 1

- o 25 s

Street crime on weekends
High: 1

-anu 0 125 25 s

10
km

N

A

N

A

Property crime on weekends
High : 1

Property crime on weekdays
High - 1

- Low: 0 0 125 25 5

Low 0 0 125 25 s

10
km km

N

A

N

A

Vehicle crime on weekdays Vehicle crime on weekends

High + 1 High : 1

-, 0 125 25 s

Low: 0 0 125 25 5

10 10
km km

Fig. 2 Kernel density patterns of crime-related tweets of 2014 in San Jose, California, USA, a street crime on weekdays; b street crime on weekends;
¢ property crime on property crime; d property crime on weekends; e vehicle crime on weekdays; f vehicle crime on weekends
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Fig. 3 Spatial and temporal semi-variograms and fitting models for weekly-based periods and 3D plots of spatio-temporal covariance model

for ST-Cokriging: a-f street crime: a spatial semi-variogram for weekdays, b temporal semi-variogram for weekdays, ¢ 3D plots of spatio-temporal
covariance model for ST-Cokriging for weekdays, d spatial semi-variogram for weekends, e temporal semi-variogram for weekends, f 3D plots

of spatio-temporal covariance model for ST-Cokriging for weekends; g-1 property crime: g spatial semi-variogram for weekdays, h temporal semi-
variogram for weekdays, i 3D plots of spatio-temporal covariance model for ST-Cokriging for weekdays, j spatial semi-variogram for weekends,

k temporal semi-variogram for weekends, I 3D plots of spatio-temporal covariance model for ST-Cokriging for weekends; m-r vehicle crime: m
spatial semi-variogram for weekdays, n temporal semi-variogram for weekdays, o 3D plots of spatio-temporal covariance model for ST-Cokriging
for weekdays, p spatial semi-variogram for weekends, q temporal semi-variogram for weekends, r 3D plots of spatio-temporal covariance model

for ST-Cokriging for weekends

Table 2 Parameters of fitting functions for the spatial and temporal semi-variograms for three crime types

Spatial fitting Temporal fitting
Crime type Time period n s p n s p
Street crime weekday 0 7.10%107° 11100 246x10°° 445%10°° 19
weekend 0 6.75x107° 1110.0 0.98x107° 2.12x10° 19
Property crime weekday 0 1260x107 13320 237x107 427x107 34
weekend 0 142107 1100.0 0.59%10™ 0.90x 107 2.8
Vehicle crime weekday 0 3.55% 107 1032.0 2.09% 107 339% 107 18
weekend 0 2.11%x10™ 13380 1.01x10™ 0.25%x10™ 34

models. Firstly, our analysis reveals a significant differ-
ence between spatial and temporal variograms. Spatial
semi-variograms consistently exhibited an absence of the
nugget effect (with the nugget value consistently equating
to zero), suggesting minimal measurement error within
the spatial domain. This can be primarily attributed to the
high resolution of the spatial measurements. Conversely,
temporal variograms displayed notable nugget effects,
ranging from 0.98x107° to 2.37x107° as delineated
in Fig. 3. This suggests a greater degree of randomness
within the temporal domain, which can be attributed to
the choice of using day-level temporal intervals and not
further dividing them into hours and minutes.

In addition, the analysis distinguishes the differ-
ent types of data in terms of their range (p) and sill (s)
effects. Notably, house crime categorized under prop-
erty crime exhibited higher spatial and temporal ranges

compared to vehicle crime and street crime (such as
assault and robbery) on weekdays. This implies property
crime exerts a more extended temporal influence are
likely due to the increased preparation time associated
with these crime on weekdays. Furthermore, it is note-
worthy that the spatio-temporal structures vary between
weekdays and weekends. This variance is particularly
pronounced in the case of property crime, with signifi-
cant differences observed between these temporal group-
ings—12.60x 107> and 1.42x107° for spatial sills, and
2.37x107° and 0.59x 107° for temporal sills, respectively.
This variation can be correlated to the differing profiles of
criminal types involved in property crime during week-
days and weekends, potentially influenced by the rou-
tine presence or absence of inhabitants due to workday
schedules.
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For street crime, the spatial range on weekdays (1110)
is significantly lower than that of property crime (1332),
implying that the impact zone of street crime is more
localized and possibly linked to specific hotspots prone
to such incidents. Temporally, the range is identical on
both weekdays and weekends, suggesting that the tempo-
ral impact of this crime is stable regardless of the day of a
week. However, the temporal sill shows a slight increase
on weekdays (4.45x 107 vs 2.12x107°), which implies a
higher variability in the timing of this crime during week-
days, possibly due to changes in social activity patterns.
The spatial sill values for street crime are lower in com-
parison to other two crime types, which could be attrib-
uted to the more impulsive nature of such crime, leading
to a smaller spread of influence over spatial scale.

Vehicle crime demonstrates the smallest spatial range
on weekdays (1032) and the largest on weekends (1338)
among three crime types, indicative of the mobility inher-
ent to this crime. The reduced spatial range on weekdays
could be a reflection of routine commuting paths and
concentrated parking areas, while the expanded range on
weekends might point to a wider dispersion of vehicles as
people travel to varied destinations or leave cars in less
secure locations. The temporal sill, however, is higher
on weekdays than weekends (3.39x107° vs 0.25x107°),
which could be attributed to the higher volume of vehi-
cles in use and therefore a greater opportunity for this
crime. Interestingly, vehicle crime exhibits higher spatial
sill values on weekdays (3.55x 107°), likely reflecting the
routine of individuals commuting and using their vehicles
more during the week, thus increasing the opportunity
for such crime. Conversely, the weekend sees a significant
drop in the sill (2.11x 10°), perhaps due to the decreased
routine activity, with vehicles less frequently left in vul-
nerable public spaces.

3.2 Crime prediction and validation

Based on the estimated spatio-temporal structure, the
ST-Cokriging model predict the crime risk (crime den-
sity with 100 m grid) by incorporating both the histori-
cal crime risks as primary variable and filtered Twitter
data as the co-variable. Figure 4 visually contrasts the
predicted weekday crime risk during the 22nd bi-week
for three crime types. Predicted crime risk maps through
ST-Cokriging are illustrated in Fig. 4b, d, and f, and the

(See figure on next page.)

Page 10 of 18

actual referencing crime risk maps for these weeks is
illustrated in Fig. a, c, and e. Figure 5 showcases the pre-
dicted (Fig. 5b, d, and f) and actual referencing (Fig. 5a, c,
and e) weekend crime risk distribution during the 22nd
bi-weeks for three crime types. For a fair comparison, all
images use a consistent color scale. A close similarity is
observed between the predicted and referencing crime
risk for all three crime types.

We carried out further validation against reference by
calculating the correlation r and RMSE for bi-weeks 10,
16, and 22, as shown in Tables 3 and 4. For all types of
crime (street crime, property crime, and vehicle crime),
the prediction model demonstrates higher accuracy
when co-variables are incorporated. This is evident on
both weekdays and weekends, and across all the bi-
weeks observed (bi-weeks 10, 16, and 22). For instance,
for street crime during weekdays of bi-weeks 22, the pre-
diction with the co-variable has a correlation coefficient
of 0.5219 and an RMSE of 0.0377, whereas the predic-
tion without the co-variable has a correlation coefficient
of 0.4230 and an RMSE of 0.1000. The property crime
category during weekdays of the same bi-weeks, when
modeled with tweets as the co-variable, produces a corre-
lation coefficient of 0.8803 and an RMSE of 0.0393. With-
out the co-variable, the correlation coefficient drops to
0.8524 and the RMSE increases to 0.0977. The correlation
coefficient for vehicle crime prediction during weekdays
is 0.8939 when including the co-variable and 0.8905 when
excluding the co-variable. The RMSE is 0.0323 with the
co-variable and 0.0993 without the co-variable. For street
crime on the weekend of bi-week 22, the correlation is
0.3661 (with co-variable) and 0.2859 (without co-varia-
ble), while the RMSEs are 0.0443 and 0.0970, respectively.
For the property crime category during weekends of this
bi-weeks, the prediction with the co-variable results in a
correlation coefficient of 0.7336 and an RMSE of 0.0421.
In contrast, without the co-variable, the correlation coef-
ficient is 0.7373 with an RMSE of 0.1089. In the weekend
of bi-weeks 22, the vehicle crime model with the co-
variable produces a correlation of 0.7874 and an RMSE
of 0.0339. Without the co-variable, the correlation coef-
ficient is 0.7802 with an RMSE of 0.0994.

To conclude, integrating crime-related tweets as a
co-variable significantly improved predictive accuracy
for all crime types. Specifically, during weekdays, the

Fig. 4 Biweekly crime prediction results (weekdays) from ST-Cokriging and validation against actual reference crime risk map: a actual crime
risk map during weekdays of bi-weeks 22 for street crime; b ST-Cokriging predicted crime risk map during weekdays of bi-weeks 22 for street
crime; ¢ actual crime risk map during weekdays of bi-weeks 22 for property crime; d ST-Cokriging predicted crime risk map during weekdays
of bi-weeks 22 for property crime; e actual crime risk map during weekdays of bi-weeks 22 for vehicle crime; f ST-Cokriging predicted crime risk map

during weekdays of bi-weeks 22 for vehicle crime
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average increase of correlation coefficient was 15.8%
for street crime, 1.9% for property crime, and 0.4% for
vehicle crime. Meanwhile, on weekends, the correlation
increased by 13.9%, 12.4%, and 6.3% for street crime,
property crime, and vehicle crime, respectively. The
RMSE significantly decreased when incorporating crime-
related tweets as a co-variable compared to the model
without co-variables.

3.3 Crime hotspots analysis

PAIs and PEIs were computed based on the crime risk
map to generate spatial distributions of crime hotspots
for optimized law enforcement resource allocation. For
each threshold, a map can be generated for crime risk
hotspots and a highlighted thresholding area were gen-
erated as the predicted police patrolling area. Then hit
points were calculated as the detected criminal activities
within these highlighted areas. These hit points were sub-
sequently utilized to derive the PAI metrics at the given
threshold. By comparing the PAIs at different thresholds,
the optimal threshold was chosen and the corresponding
PAI and PEI can be calculated.

PAI curves for ST-Cokriging predictions with and
without co-variable were compared during weekdays
and weekends of bi-weeks 22 for street crime, property
crime, and vehicle crime (Fig. 6). PAI represents the per-
centage of all actual crime events during each bi-weekly
period that occurred within predicted hotspots, typically
increasing as the threshold value rises. The inclusion of
crime-related tweets significantly improved crime pre-
diction performance, as evidenced by the substantial
increase in PAI values across both weekdays and week-
ends of the bi-weeks. Additionally, Table 5 indicates that
incorporating crime-related tweets as a co-variable in
predictions results in a higher PAImax compared to the
control group where this co-variable is excluded.

Larger hotspots can capture more criminal activi-
ties but pose challenges for efficient police deployment.
It is essential to identify hotspots of an optimal size to
enable effective resource allocation. The inflection point
in the PAI curves serves as a guideline for selecting the
ideal PAI/PEI, ensuring optimal hotspot identification
(Chainey et al., 2008) (Table 6). For example, for week-
days of bi-weeks 22 (vehicle crime), an optimal thresh-
old value of 0.0616 was selected corresponding to a PAI

(See figure on next page.)
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inflection point of 1.85 (Fig. 6e). Based on this approach,
we determined the best thresholds during weekdays and
weekends in bi-weeks 22 for street crime, property crime,
and vehicle crime with their associated PEI and PAI val-
ues detailed in Table 6. The highest recorded PAI was
1.85 during weekdays in bi-weeks 22 for vehicle crime.
Figure 7 depicts hotspot maps during weekdays in bi-
weeks 22 for street crime, property crime, and vehicle
crime using optimal PAI thresholds of 0.0112, 0.0392, and
0.0616, respectively. For street crime, two small hotspots
are shown in red, with successful predictions (hit points)
marked in red and non-hit points in green. The hotspots
accurately predicted 8 out of 47 street crime incidents,
resulting in a hit rate of 17.02% and covering 3.49% of
the total area. Property crime hotspots are represented
by two large and two small areas in red. The model suc-
cessfully predicted 88 out of 304 incidents, with a hit rate
of 28.94%, and the hotspots spanned 6.80% of the study
area. Vehicle crime analysis identified two large and one
small hotspot, with 141 out of 378 crime incidents suc-
cessfully predicted, yielding a hit rate of 37.30% and hit
area of 13.68%.

4 Discussion and conclusions

In this study, we used the spatio-temporal Cokrig-
ing crime prediction method to incorporate historical
crime data and voluntary and geotagged social media
posts to predict different crime in three major catego-
ries: street crime, property crime, and vehicle crime,
within the larger metropolitan area of San Jose, located
in the SFBA. The police historical crime calls were uti-
lized as the primary variable for the prediction, and
we utilized the ST-Cokriging algorithm to incorporate
spatio-temporal structure of social media Twitter data
as the co-variable for predictions of different crime cat-
egories. The results indicate that including geotagged
crime-related tweets as the co-variable alongside histor-
ical crime data significantly improved crime prediction
accuracy in San Jose for case study year, demonstrating
the value of combining social media content with tradi-
tional crime data for enhanced forecasting. This study
provides new findings and methods that explore the
integration of multi-source digital data to further refine
the predictive capabilities of crime forecasting models.
By leveraging the voluntary, geotagged, and dynamic

Fig. 5 Biweekly crime prediction results (weekends) from ST-Cokriging and validation against actual reference crime risk map: a actual crime risk
map during weekends of bi-weeks 22 for street crime; b ST-Cokriging predicted crime risk map during weekends of bi-weeks 22 for street crime; ¢
actual crime risk map during weekends of bi-weeks 22 for property crime; d ST-Cokriging predicted crime risk map during weekends of bi-weeks
22 for property crime; e actual crime risk map during weekends of bi-weeks 22 for vehicle crime; f ST-Cokriging predicted crime risk map

during weekends of bi-weeks 22 for vehicle crime
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Table 3 Statistical tests comparing ST-Cokriging predictions against reference data for three crime types during weekdays in bi-weeks

Street crime

Property crime

Vehicle crime

w/co-variable

w/o co-variable

w/co-variable

w/o co-variable

w/co-variable

w/o co-variable

r RMSE r RMSE r RMSE r RMSE r RMSE r RMSE
Weekdays in bi-weeks 10 05012 0.0377 03381 0.1003  0.8240 0.0358 08083 0.1007 08616 00372 08613 0.1000
Weekdays in bi-weeks 16 06038 00459 03916  0.1001 0.8321 0.0351 08184 0.1007 08976 00312 0888 0.1016
Weekdays in bi-weeks 22 05219  0.0378 04230 0.1000 08802 00393 08524 00977 08939 00323 08905 0.0993

Table 4 Statistical tests comparing ST-Cokriging predictions against reference data for three crime types during weekends in bi-weeks

Street crime

Property crime

Vehicle crime

w/co-variable

w/o co-variable

w/co-variable

w/o co-variable

w/co-variable

w/o co-variable

r RMSE r RMSE r RMSE r RMSE r RMSE r RMSE
Weekends in bi-weeks 10~ 04151 0.0448 02482 00993 07219 00346 05910 0098 07599 00382 0.7252  0.1008
Weekends in bi-weeks 16 04479 00440 02772 0.1000 07621 00411 05174 00988 07966 00378 0.6472  0.1007
Weekends in bi-weeks 22 03661 00443 02859 00970 07336 00421 07373 0.1089 07847 00339 0.7802  0.0994

nature of tweets and identifying different keywords to
model social responses to the three categories of crime,
our model offers a more comprehensive understanding
of crime patterns, outperforming traditional method-
ologies. It demonstrates that social media information
can effectively aid in modeling crime patterns in both
spatial and temporal contexts. This methodology holds
great potential for broader applications, such as opti-
mizing police patrol routes, identifying high-risk areas
for targeted interventions, and supporting urban plan-
ning efforts to design safer communities.

This study extends the analysis of a previous case
study by investigating three major crime categories
across a larger metropolitan area with diverse crime
activities. This additional modeling of spatial and tem-
poral dependency and autocorrelation has revealed dis-
tinct spatial-temporal patterns in the semivariograms
for the three crime types. The results suggest that
property crime has a longer temporal impact, likely
due to the increased preparation time required during
the week. Vehicle crime initially displayed the highest
prediction accuracy using historical crime data alone,
suggesting a strong reliability in traditional methods for
this crime category. However, the incremental improve-
ment in accuracy with the inclusion of crime-related
tweets for this category was minimum. Despite the fact
that social media data offers some enhancement, its
impact is relatively limited when considered in the con-
text of vehicle crime, which is already well-predicted.
In contrast, street crime had the lowest prediction
accuracy when based solely on historical crime data;
however, the integration of social media data yielded a

substantial increase in predictive accuracy. The signifi-
cant improvement features the value of real-time and
volunteered geographic information in understand-
ing and forecasting more complex and less predictable
crime types. The predictive accuracy of property crime
was moderate both with and without tweet data. This
suggests a certain level of predictability inherent to
these crimes, which is not substantially enhanced nor
diminished by the addition of social media data.

An additional innovative aspect of this study is the use
of a dual approach for filtering geotagged crime-related
tweets, combining keyword-based methods with manual
review to enhance the accuracy of crime predictions. The
keyword filtering process involved selecting tweets based
on predefined keywords for various crime categories,
such as "assault,” "robbery," and "theft." However, rely-
ing solely on keyword filtering can introduce noise into
the dataset due to the broad nature of some terms. To
address this, a manual review step was implemented to
refine the dataset, ensuring that only the most relevant
tweets were included in the analysis. We employed a
supervised method to further filter out tweets contain-
ing crime-related keywords which were related to crime
events. The filtered dataset could serve as training data
for an AI model, enabling future integration of the Large
Language Model (LLM). This would allow for real-time
fine-tuning of crime-related keywords and automatically
filtering social media posts for the next step in predic-
tion. Such an approach would enable crime prediction
to be more automated and in real-time, utilizing sepa-
rate models for street crime, vehicle crime, and property
crime, each designed to account for distinct spatial and
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Fig. 6 PAI curves for ST-Cokriging predictions of crime risks in bi-weeks 22 (predictions with and without co-variable, X-axis: distance; Y-axis: PAI):
a weekdays for street crime; b weekends for street crime; ¢ weekdays for property crime; d weekends for property crime; e weekdays for vehicle
crime; f weekends for vehicle crime

Table 5 PAI ., for ST-Cokriging predictions of crime risks with/without co-variable in bi-weeks 22 for three crime types

PAl,,., (weekdays of bi-weeks 22) PAl,,... (weekend of bi-weeks 22)
w/co-variable w/o co-variable w/co-variable w/o co-variable
Street crime 1.80 1.09 1.16 1.07
Property crime 2.19 1.52 1.85 1.38

Vehicle crime 227 1.65 247 178
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Table 6 The chosen threshold and corresponding PEI of bi-week 22 for three crime types

Optimal threshold (bi-weekday) Optimal threshold (bi-weekend)

Threshold PEI PAI Threshold PEI PAI
Street crime 0.0112 0.73 132 0.0160 091 1.06
Property crime 0.0392 0.80 1.76 0.0360 0.88 1.63
Vehicle crime 0.0616 0.81 1.85 0.0544 0.72 1.78

ime probability during
bi-weeks 22

Fig. 7 Predicted crime hotspots and actual location of crime incidents during weekdays in bi-weeks 22, 2014. a street crime, b property crime, ¢

vehicle crime

temporal dependency and autocorrelations. This study
represents a pioneering method that enhances the differ-
entiation and modeling of various crime types.

Police phone call records were utilized as a proxy for
crime data as the primary variable in the study. While
these records do not represent actual crime data, they
are closely aligned with crime incidents as many calls
involve emergency situations or reports of ongoing crim-
inal activities. The police call data captures real-time or
near-real-time responses to incidents that often lead to
formal crime reports. This makes them a valuable source
of information, offering immediate insights into crimi-
nal behaviors. In addition, our findings revealed that the
predictive accuracy for the three crime types was lower
on weekends compared to weekdays. This discrepancy
may be due to the increased variability in social behav-
iors during weekends, such as larger gatherings, night-
life activities, and alcohol consumption, which can lead
to more spontaneous or unpredictable crime patterns.
Weekdays follow routine activities and schedules that
create consistent patterns, while weekends are more
unpredictable, making crime prediction models less
effective. Weekends consist of only two days, so there are

fewer crime incidents recorded than on weekdays when
there is a greater amount of data available.

This study has several limitations. First, using Twitter
data may introduce multiple data quality issues. Sam-
pling bias arises because the platform captures only a
subset of the population, often overrepresenting certain
demographic or interest groups while underrepresenting
others. In addition, geolocation bias further limits repre-
sentativeness, as only about 1% of tweets are geotagged.
This lack of spatial information can distort spatial analy-
ses, given that users who share their location may differ
systematically in age, socioeconomic status, or online
behavior from those who do not. Moreover, relying solely
on Twitter may overlook complementary insights avail-
able from other social media platforms. Future research
could enhance prediction accuracy by integrating multi-
platform social media data. In addition to our bi-weekly
prediction scheme (using the prior three bi-weekly peri-
ods to predict the fourth), we conducted a sensitivity
analysis with weekly and monthly windows—specifically,
three prior weeks to predict the fourth week, and three
prior months to predict the fourth month—using the
same model specification and hyperparameters. Across
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these alternatives, we observed similar predictive accu-
racy, indicating that the model’s performance is robust to
the temporal window choice and that the way we capture
temporal autocorrelation is not materially affected by
shifting the window length.

In conclusion, this study employed crime predic-
tion modelling by integrating geotagged crime-related
tweets as a co-variable alongside historical crime data
within ST-Cokriging framework. The method was
applied to crime risk predictions of three crime cate-
gories during both weekdays and weekends in a major
metropolitan area of concern (San Francisco Bay Area).
Our findings offer valuable insights into the distinct
dynamics of criminal activities over time and space
across different crime types. The integration of social
media data as a co-variable significantly improved the
accuracy of crime predictions, outperforming models
based solely on historical crime data. This demonstrates
the value of crowd-sourced geotagged information in
refining predictive models and strengthening crime
alert mechanisms. The findings highlight the potential
of social media responses to improve real-time crime
detection and inform evidence-based police enforce-
ment. The strong predictive performance underscores
the potential of this integrated approach, and empha-
sizes the need to integrate additional machine learn-
ing, large language models (LLMs), and Al techniques
to more accurately capture the complex and multifac-
eted nature of criminal behavior. This study contributes
to the advancement of crime prediction by revealing
distinct spatial and temporal dynamics among street,
property, and vehicle crimes, thereby providing action-
able insights for law enforcement and urban planners
to design targeted prevention strategies—such as allo-
cating patrol resources based on crime type, improv-
ing environmental design in recurrent hotspots, and
strengthening community-based interventions to
enhance public safety.
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